A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions

نویسنده

  • XIANLING FAN
چکیده

We obtain a Viterbo-Hofer-Zehnder type result for Hamiltonian inclusions. Let H : : IR2N -~ IR be a locally Lipschitz function and c E IR. Suppose that E := {aE IR2~ ~ ~(a-) = c} is a nonempty compact subset of IR2N and 0 ~ ~H(x) for x E E. Then for any 03B4 > 0 the Hamiltonian inclusion x E has a conservative periodic solution x(t) such that H (~(t)~ = c’ E (c ~ , c + 8) for all t.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hofer–Zehnder capacity and length minimizing Hamiltonian paths

We use the criteria of Lalonde and McDuff to show that a path that is generated by a generic autonomous Hamiltonian is length minimizing with respect to the Hofer norm among all homotopic paths provided that it induces no non-constant closed trajectories in M . This generalizes a result of Hofer for symplectomorphisms of Euclidean space. The proof for general M uses Liu–Tian’s construction of S...

متن کامل

Squeezing in Floer theory and refined Hofer–Zehnder capacities of sets near symplectic submanifolds

We use Floer homology to study the Hofer–Zehnder capacity of neighborhoods near a closed symplectic submanifold M of a geometrically bounded and symplectically aspherical ambient manifold. We prove that, when the unit normal bundle of M is homologically trivial in degree dim(M) (for example, if codim(M) > dim(M)), a refined version of the Hofer–Zehnder capacity is finite for all open sets close...

متن کامل

Hofer-Zehnder capacity and length minimizing paths in the Hofer norm

We use the criteria of Lalonde and McDuff to determine a new class of examples of length minimizing paths in the group Ham(M). For a compact symplectic manifold M of dimension two or four, we show that a path inHam(M), generated by an autonomous Hamiltonian and starting at the identity, which induces no non-constant closed trajectories of points in M , is length minimizing among all homotopic p...

متن کامل

Stratified Integrals and Unknots in Inviscid Flows

We prove that any steady solution to the Cω Euler equations on a Riemannian S3 must possess a periodic orbit bounding an embedded disc. One key ingredient is an extension of Fomenko’s work on the topology of integrable Hamiltonian systems to a degenerate case involving stratified integrals. The result on the Euler equations follows from this when combined with some contact-topological perspecti...

متن کامل

Relative Hofer–zehnder Capacity and Periodic Orbits in Twisted Cotangent Bundles

The main theme of this paper is a relative version of the almost existence theorem for periodic orbits of autonomous Hamiltonian systems. We show that almost all low levels of a function on a geometrically bounded symplectically aspherical manifold carry contractible periodic orbits of the Hamiltonian flow, provided that the function attains its minimum along a closed symplectic submanifold. As...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017